데이터를 덮어 쓰지 않고 기존 Excel 파일에 쓰는 방법 (Pandas 사용)?
팬더를 사용하여 다음과 같은 방식으로 Excel 파일에 씁니다.
import pandas
writer = pandas.ExcelWriter('Masterfile.xlsx')
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
writer.save()
Masterfile.xlsx는 이미 여러 탭으로 구성되어 있습니다. 그러나 아직 "Main"이 포함되어 있지 않습니다.
Pandas는 "Main"시트에 올바르게 기록하지만, 불행히도 다른 모든 탭도 삭제합니다.
Pandas 문서에 따르면 xlsx 파일에 openpyxl을 사용합니다. 의 코드를 훑어 보면 ExcelWriter
다음과 같은 일이 잘 될 수 있다는 단서를 얻을 수 있습니다.
import pandas
from openpyxl import load_workbook
book = load_workbook('Masterfile.xlsx')
writer = pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl')
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
writer.save()
다음은 도우미 기능입니다.
def append_df_to_excel(filename, df, sheet_name='Sheet1', startrow=None,
truncate_sheet=False,
**to_excel_kwargs):
"""
Append a DataFrame [df] to existing Excel file [filename]
into [sheet_name] Sheet.
If [filename] doesn't exist, then this function will create it.
Parameters:
filename : File path or existing ExcelWriter
(Example: '/path/to/file.xlsx')
df : dataframe to save to workbook
sheet_name : Name of sheet which will contain DataFrame.
(default: 'Sheet1')
startrow : upper left cell row to dump data frame.
Per default (startrow=None) calculate the last row
in the existing DF and write to the next row...
truncate_sheet : truncate (remove and recreate) [sheet_name]
before writing DataFrame to Excel file
to_excel_kwargs : arguments which will be passed to `DataFrame.to_excel()`
[can be dictionary]
Returns: None
"""
from openpyxl import load_workbook
import pandas as pd
# ignore [engine] parameter if it was passed
if 'engine' in to_excel_kwargs:
to_excel_kwargs.pop('engine')
writer = pd.ExcelWriter(filename, engine='openpyxl')
# Python 2.x: define [FileNotFoundError] exception if it doesn't exist
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
try:
# try to open an existing workbook
writer.book = load_workbook(filename)
# get the last row in the existing Excel sheet
# if it was not specified explicitly
if startrow is None and sheet_name in writer.book.sheetnames:
startrow = writer.book[sheet_name].max_row
# truncate sheet
if truncate_sheet and sheet_name in writer.book.sheetnames:
# index of [sheet_name] sheet
idx = writer.book.sheetnames.index(sheet_name)
# remove [sheet_name]
writer.book.remove(writer.book.worksheets[idx])
# create an empty sheet [sheet_name] using old index
writer.book.create_sheet(sheet_name, idx)
# copy existing sheets
writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
except FileNotFoundError:
# file does not exist yet, we will create it
pass
if startrow is None:
startrow = 0
# write out the new sheet
df.to_excel(writer, sheet_name, startrow=startrow, **to_excel_kwargs)
# save the workbook
writer.save()
참고 : 팬더 <0.21.0에 대한 교체 sheet_name
와 함께 sheetname
!
사용 예 :
append_df_to_excel('d:/temp/test.xlsx', df)
append_df_to_excel('d:/temp/test.xlsx', df, header=None, index=False)
append_df_to_excel('d:/temp/test.xlsx', df, sheet_name='Sheet2', index=False)
append_df_to_excel('d:/temp/test.xlsx', df, sheet_name='Sheet2', index=False, startrow=25)
openpyxl
version 2.4.0
및 pandas
version을 사용하면 0.19.2
@ski가 제안한 프로세스가 조금 더 간단 해집니다.
import pandas
from openpyxl import load_workbook
with pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl') as writer:
writer.book = load_workbook('Masterfile.xlsx')
data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
#That's it!
오래된 질문이지만 일부 사람들은 여전히 이것을 검색한다고 생각합니다.
I find this method nice because all worksheets are loaded into a dictionary of sheet name and dataframe pairs, created by pandas with the sheetname=None option. It is simple to add, delete or modify worksheets between reading the spreadsheet into the dict format and writing it back from the dict. For me the xlsxwriter works better than openpyxl for this particular task in terms of speed and format.
Note: future versions of pandas (0.21.0+) will change the "sheetname" parameter to "sheet_name".
# read a single or multi-sheet excel file
# (returns dict of sheetname(s), dataframe(s))
ws_dict = pd.read_excel(excel_file_path,
sheetname=None)
# all worksheets are accessible as dataframes.
# easy to change a worksheet as a dataframe:
mod_df = ws_dict['existing_worksheet']
# do work on mod_df...then reassign
ws_dict['existing_worksheet'] = mod_df
# add a dataframe to the workbook as a new worksheet with
# ws name, df as dict key, value:
ws_dict['new_worksheet'] = some_other_dataframe
# when done, write dictionary back to excel...
# xlsxwriter honors datetime and date formats
# (only included as example)...
with pd.ExcelWriter(excel_file_path,
engine='xlsxwriter',
datetime_format='yyyy-mm-dd',
date_format='yyyy-mm-dd') as writer:
for ws_name, df_sheet in ws_dict.items():
df_sheet.to_excel(writer, sheet_name=ws_name)
For the example in the 2013 question:
ws_dict = pd.read_excel('Masterfile.xlsx',
sheetname=None)
ws_dict['Main'] = data_filtered[['Diff1', 'Diff2']]
with pd.ExcelWriter('Masterfile.xlsx',
engine='xlsxwriter') as writer:
for ws_name, df_sheet in ws_dict.items():
df_sheet.to_excel(writer, sheet_name=ws_name)
Starting in pandas 0.24 you can simplify this with the mode
keyword argument of ExcelWriter
:
import pandas as pd
with pd.ExcelWriter('the_file.xlsx', engine='openpyxl', mode='a') as writer:
data_filtered.to_excel(writer)
I know this is an older thread, but this is the first item you find when searching, and the above solutions don't work if you need to retain charts in a workbook that you already have created. In that case, xlwings is a better option - it allows you to write to the excel book and keeps the charts/chart data.
simple example:
import xlwings as xw
import pandas as pd
#create DF
months = ['2017-01','2017-02','2017-03','2017-04','2017-05','2017-06','2017-07','2017-08','2017-09','2017-10','2017-11','2017-12']
value1 = [x * 5+5 for x in range(len(months))]
df = pd.DataFrame(value1, index = months, columns = ['value1'])
df['value2'] = df['value1']+5
df['value3'] = df['value2']+5
#load workbook that has a chart in it
wb = xw.Book('C:\\data\\bookwithChart.xlsx')
ws = wb.sheets['chartData']
ws.range('A1').options(index=False).value = df
wb = xw.Book('C:\\data\\bookwithChart_updated.xlsx')
xw.apps[0].quit()
There is a better solution in pandas 0.24:
with pd.ExcelWriter(path, mode='a') as writer:
s.to_excel(writer, sheet_name='another sheet', index=False)
before:
after:
so upgrade your pandas now:
pip install --upgrade pandas
def append_sheet_to_master(self, master_file_path, current_file_path, sheet_name):
try:
master_book = load_workbook(master_file_path)
master_writer = pandas.ExcelWriter(master_file_path, engine='openpyxl')
master_writer.book = master_book
master_writer.sheets = dict((ws.title, ws) for ws in master_book.worksheets)
current_frames = pandas.ExcelFile(current_file_path).parse(pandas.ExcelFile(current_file_path).sheet_names[0],
header=None,
index_col=None)
current_frames.to_excel(master_writer, sheet_name, index=None, header=False)
master_writer.save()
except Exception as e:
raise e
This works perfectly fine only thing is that formatting of the master file(file to which we add new sheet) is lost.
writer = pd.ExcelWriter('prueba1.xlsx'engine='openpyxl',keep_date_col=True)
The "keep_date_col" hope help you
book = load_workbook(xlsFilename)
writer = pd.ExcelWriter(self.xlsFilename)
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
df.to_excel(writer, sheet_name=sheetName, index=False)
writer.save()
'code' 카테고리의 다른 글
뷰가 아닌 Android에서 프래그먼트를 사용하면 어떤 이점이 있습니까? (0) | 2020.08.16 |
---|---|
: before CSS 의사 요소를 사용하여 모달에 이미지 추가 (0) | 2020.08.16 |
Rsync는 디렉토리 내용을 복사하지만 디렉토리 자체는 복사하지 않습니다. (0) | 2020.08.16 |
하나의 쿼리에서 MySQL 다중 조인? (0) | 2020.08.16 |
msbuild를 사용하여 솔루션의 프로젝트 파일 지정 (0) | 2020.08.16 |